Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding

Angelique Broghammera,b,1, Lene Krusella,b, Mickaël Blaisea,b, Jørgen Sauerb,1, John T. Sullivand,1, Nicolai Maalonanc, Maria Vinthera,b, Andrea Lorenzena, Esben B. Madsenab, Knud J. Jensoncc, Peter Roepeortf, Sören Thirupa,b, Clive W. Ronsond,1, Mikkel B. Thygesensen,1 and Jens Stougaarde,b,1

aCentre for Carbohydrate Recognition and Signalling, bDepartment of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark; cDepartment of Chemistry, Faculty of Science, University of Copenhagen, DK-1871 Frederiksberg C, Denmark; dDepartment of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand; and eDepartment of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark

Edited by Jeffery L. Dangl, University of North Carolina, Chapel Hill, NC, and approved July 4, 2012 (received for review March 28, 2012)

Lipochitin oligosaccharides called Nod factors function as primary rhizobial signal molecules triggering legumes to develop new plant organs: root nodules that host the bacteria as nitrogen-fixing bacteroids. Here, we show that the Lotus japonicus Nod factor receptor 5 (NFR5) and Nod factor receptor 1 (NFR1) bind Nod factor directly at high-affinity binding sites. Both receptor proteins were posttranslationally processed when expressed as fusion proteins and extracted from purified membrane fractions of Nicotiana benthamiana or Arabidopsis thaliana. The N-terminal signal peptides were cleaved, and NFR1 protein retained its in vitro kinase activity. Processing of NFR5 protein was characterized by determining the N-glycosylation patterns of the ectodomain. Two different glycan structures with identical composition, Man9GlcNAco, were identified by mass spectrometry and located at amino acid positions N68 and N198. Receptor–ligand interaction was measured by using ligands that were labeled or immobilized by application of chemoselective chemistry at the anomeric center. High-affinity ligand binding was demonstrated with both solid-phase and free solution techniques. The K_d values obtained for Nod factor binding were in the nanomolar range and comparable to the concentration range sufficient for biological activity. Structure-dependent ligand specificity was shown by using chitin oligosaccharides. Taken together, our results suggest that ligand recognition through direct ligand binding is a key step in the receptor-mediated activation mechanism leading to root nodule development in legumes.

Lysin motif proteins | plant-microbe interactions | symbiotic signalling | Lysin motif receptor-like kinase | Non-self recognition

Formation of nitrogen-fixing root nodules relies on an intriguing signal exchange between the legume host and the bacterial microsymbiont (1). In this two-way exchange, Nod factors synthesized by rhizobia function as central signal molecules, which induce early physiological responses, gene expression, and cell division in susceptible legumes (1–3). In root cells of the legume hosts, perception is mediated by Nod factor receptors (NFRs) containing ectodomains with three lysin motif (LysM) modules and cytoplasmic serine/threonine kinase domains (4–9). Mutant studies in the model legumes Lotus japonicus (Lotus) and Medicago truncatula (Medicago) as well as the crop legumes soybean (10, 11) and pea (5, 6) have shown that NFRs are required for nodulation. Mutant analysis in Lotus identified two NFRs, NFR1 and NFR5, and phenotypic analysis showed that both nfr1 and nfr5 mutants are equally impaired in nodule initiation (4, 5). In Medicago, only mutation of the NFR5 ortholog, Nfp, results in a nonnodulating phenotype, whereas the NFR1 homolog Lk3 is required for progression of infection threads (7–9, 12).

The earliest plant responses to Nod factor, such as membrane depolarization, cytoplasmic alkalization, calcium fluxes, calcium spiking, and root hair deformation (3, 13), are either strongly attenuated or absent in the Lotus nfr1 and nfr5 mutants and the Medicago nfp mutant (4, 5, 7–9). In wild-type plants, these responses are induced by Nod factor concentrations in the nanomolar range (14–16). Experiments pursuing the subsequent receptor activation process have shown kinase activity from both the Lotus NFR1 and the Medicago LYK3 cytoplasmic domains expressed in E. coli. Several autophosphorylation sites were detected in their kinase domains and intermolecular autophosphorylation with dual specificity for Ser/Thr and Tyr was observed (17, 18). Using the same assay, kinase activity was not detected for the cytoplasmic domains of NFR5 and NFP. However, NFR1 transphosphorylated NFR5 at a single Ser residue (17). So far, all of the NFRs from different legumes are predicted to have a single transmembrane domain. Membrane localization of Lotus NFR1 and NFP was shown in Nicotiana benthamiana leaf cells and by copurification of the expressed proteins with the plasma membrane (17). In Medicago LYK3-GFP fusion proteins were associated with puncta located in the plasma membrane or in membrane-tethered vesicles (19), whereas NFP localized to the plasma membrane in N. benthamiana (20). Further insight into the NFR receptor-mediated signaling came from assays of protein-complex formation by using a split YFP system and confocal microscopy in N. benthamiana leaf cells (17). Interaction between membrane-bound NFR1 and NFR5 detected as bimolecular complexes was observed only when a kinase-inactive NFR1 was expressed together with NFR5. In contrast, a rapid NFR5-dependent cell death response was observed after expression of a kinase-active NFR1 (17). A heterocomplex of NFR1 and NFR5 was thus capable of initiating a signal transduction process.

Genetic analysis in Lotus has placed NFR1 and NFR5 activation downstream of two signal transduction pathways leading to infection thread formation and root nodule organogenesis, respectively (21). The simplest interpretation supports a mechanism in which Nod factor perception by a NFR complex (17) at the plasma membrane leads to activation of the NFR1 kinase. This activation, in turn, triggers downstream signal transduction through phosphorylation. In agreement with this mechanism, domain swap experiments and amino acid substitution studies have demonstrated that the ectodomains of the NFR5 and NFP receptors mediate Nod factor perception and that single amino acid variations in the LysM2 module change recognition of Nod factor variants (22, 23). Allelic variation in the pea SYM37 gene, leading to amino acid differences

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

1To whom correspondence should be addressed. E-mail: stougaard@mb.au.dk.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1205171109/-/DCSupplemental.
in the LysM module of the encoded protein, was similarly suggested to account for differences in pea nodulation (6, 24). However, direct receptor binding of the Nod factor demonstrating a receptor–ligand relationship has not been shown and progress has been hampered by the recalcitrant biochemical properties characteristic of single-pass membrane proteins and by the amphiphilic nature of Nod factors.

We have investigated the in vitro ligand binding capacity of the Lotus NFR5 and NFR1 receptor proteins. Methods for expression of full-length proteins were established, and two different techniques were used for characterizing receptor–ligand interactions and determining K_d values for Nod factor binding.

Results

Expression and Purification of NFR1 and NFR5 Fusion Proteins

Attempts to express NFR proteins in *Escherichia coli*, yeast, or mammalian cells were largely unsuccessful, producing low yields and aggregated proteins. Plant-based expression systems were also explored because they appeared to be more suitable for processing and compartmentalization of plant membrane proteins. Expression of NFR1 and NFR5 was accomplished by transient expression in *N. benthamiana* and by stable expression of NFR5 in *Arabidopsis thaliana*. Optimal transient expression was achieved by infiltration of leaves of 3-wk-old greenhouse-grown *N. benthamiana* plants by using *Agrobacterium tumefaciens* AGL1. Because expression levels between experiments were variable, and protein yield had to be balanced against cellular aggregation, full-length NFR1 and NFR5 were expressed as GFP/YFP fusion proteins that could be monitored by using confocal microscopy. Confocal microscopy was also used to identify primary *A. thaliana* transformants expressing NFR5-YFP fusion protein before further propagation and seed multiplication. We were unable to establish stable lines expressing NFR1.

For extraction of NFR1 and NFR5 proteins, plasma membranes were isolated and purified by aqueous two-phase partitioning. To release the proteins from the membrane fraction, 21 detergents were tested. Apart from SDS, only Fos-Choline 10 and n-decyl-α-D-maltopyranoside solubilized the two proteins, and Fos-Choline 10 was chosen for further work. The purification protocol involved isolation of plasma membranes or microsomal membranes by two phase partitioning and differential centrifugation, protein solubilization from the plasma membrane or the microsomal fraction, affinity purification (Fig. 1A), gel filtration (Fig. 1B and C), and finally protein quantification by in-gel fluorescence (Fig. 1B) with a recombinant GFP standard. Approximately 25 μg of full-length NFR1 or NFR5 protein was extracted from 1 kg of plant material by using this procedure (Fig. 1B). Starting from the microsomal fraction, a 40-fold enrichment was observed in the final gel filtration-purified protein samples as determined by using in-gel fluorescence.

Processing and Activity of the NFR Proteins

Bioinformatic analysis predicted that the NFR proteins would be synthesized with an N-terminal signal peptide for entry to the endoplasmic reticulum and the secretory pathway, where posttranslational modification occurs. To assess the entry into the secretory pathway in the heterologous expression systems, the N-termini of purified NFR1 and NFR5 proteins were sequenced. For NFR5, the N-terminal sequence confirmed processing of the predicted 26 aa signal peptide (S) (Fig. S1A). However, the original prediction for NFR1 was less precise. Instead of the predicted 17 amino acids (4), sequencing identified a signal peptide of 23 or 24 amino acids, which is consistent with predictions achieved by using SignalP version 4.0 (Fig. S1B). This N-terminal processing removed one cysteine from the mature protein, leaving six cysteines arranged in three pairs in the processed ectodomain, as for NFR5 (Fig. S1A and B).

Kinase activity was used to verify functionality of the full-length NFR1-GFP fusion protein purified from *N. benthamiana*. Both autophosphorylation and phosphorylation of Myelin basic protein (MyBP) was observed for the full-length NFR1-GFP protein (Fig. 1D and E), confirming results obtained with the kinase domain expressed in *E. coli*. In contrast, no kinase activity was detected from the NFR5-GFP full-length protein, consistent with the absence of detectable kinase activity from the NFR5 kinase domain expressed in *E. coli* (Fig. 1E).

Because N-glycosylation is a common posttranslational modification of plasma membrane-localized proteins, glycosylation of NFR5 was assessed as a measure of processing. N-glycosylation of NFR5 at the five possible N-glycosylation motifs NXS/T (X ≠ P, D) in its ectodomain (Fig. S1A) was determined by using MALDI TOF/TOF mass spectrometry. Protein bands containing NFR5 expressed in *N. benthamiana* or *A. thaliana* were excised.
from SDS/PAGE gels. N-glycosylation was detected by comparing MS spectra of glycosylated and deglycosylated peptides obtained after digestion with three different enzymes followed by enrichment of glycosylated peptides by chromatography (Fig. S2). Subsequent fragmentation (MS/MS) of the relevant ion species identified two glycan structures with identical sugar composition (Man3GlcNAc2), which were linked to N68 and N198 of NFR5 (Table 1 and Table S1). Additional mannosereich glycans were identified at N68 and N198 of the NFR5 protein purified from *N. benthamiana* microsomal fractions. These glycan structures most likely reflect ongoing processing in the transient expression system (Table S1). Importantly, glycan structures containing glucose, indicative of aberrant processing, were not detected. In addition, the 35S-NFR5-GFP construct used for protein expression complemented the *Lotus nfr5-2* mutant giving 4.4 nodules per plant (n = 50), a result similar to that previously found for the wild-type *Nfr*5 gene (5), indicating that the NFR5-GFP fusion protein was functional in planta.

NFR1 and NFR5 Receptor Proteins Bind Nod Factor Directly

The physical interaction between Nod factor and NFR1 or NFR5 was initially visualized in a bead-based assay. GFP-tagged NFR1 or NFR5 protein (30 nM) were immobilized on the surface of GFP-Trap agarose beads (25), washed, and inspected by confocal microscopy. Binding of GFP-fusion proteins to beads resulted in strong green fluorescence (Fig. 2A). Nod factor isolated from *M. loti* was chemoselectively functionalized through the reducing end by aniline-catalyzed oxime formation (26, 27). This functionalization allowed the introduction of a PEG spacer with a thiol group, which was reacted onto three Alexa fluorophore (Figs. S3A and S4E). Incubation of beads with immobilized protein and 10 μM Nod factor resulted in strong green fluorescence from GFP and red fluorescence from Alexa fluorophore (Fig. 2A and Fig. S3A). Application of four NFR1-GFP or NFR5-GFP concentrations (10, 5, 2, and 1 nM) followed by incubation with 10 μM Alexa488-labeled Nod factor showed protein-dependent ligand binding (Fig. 2C and Fig. S5B). To validate the bead-based Nod factor binding assay, a series of control experiments were carried out. In summary, they showed (i) absence of Alexa488 Nod factor binding to GFP-Trap agarose beads (Fig. S6A); (ii) absence of Alexa488 Nod-factor binding to immobilized GFP (Fig. S6B); (iii) no NFR1 or NFR5 binding of the fluorophore label or PEG linker (Fig. S4A) used for coupling of the fluorescent dye to Nod factor (Fig. S6D); (iv) no nonspecific fluorescence background in microsomal membrane preparations (Fig. S6C); and (v) biological activity of Alexa488-labeled Nod factor (Fig. S8).

The ligand specificity of NFR1 and NFR5 was tested with a set of chitin oligomers (GlcNAc)x. Addition of 10^−6 M Alexa488-labeled (GlcNAc)x2, (GlcNAc)x3, or (GlcNAc)x5 (Fig. S4B) to NFR5-GFP or NFR1-GFP beads resulted in barely detectable red fluorescent signals (Fig. 2B and Fig. S5A), whereas the signal from 10^−5 M Alexa488-labeled (GlcNAc)x2, (GlcNAc)x3, or (GlcNAc)x5 was comparable with the fluorescence intensity observed to 10^−6 M Alexa488-labeled Nod factor.

In competition experiments, excess unlabeled Nod factor added before Alexa546-labeled Nod factor diminished the red fluorescence below detection (Fig. 2D and Fig. S5C). A slight difference in Nod factor binding was observed, when excess unlabeled chitin oligomers (GlcNAc)x were added before labeled Nod factor (Fig. 2D). However, the red fluorescence intensities observed in the Nod factor and (GlcNAc)x competition experiments indicate a lower affinity for (GlcNAc)x than for Nod factor, which was able to completely out-compete binding of labeled Nod factor.

NFR1 and NFR5 Receptor Proteins Bind Nod Factor with High Affinity

The GFP-bead binding assay is a visually attractive method for demonstrating direct physical interactions. However, quantification of fluorescence intensities using the confocal microscope (Fig. S7) was laborious and the sensitivity was inadequate for work with the nano- to picomolar concentrations of Nod factor that are sufficient for biological activity. Binding affinity was therefore investigated by using surface plasmon resonance (SPR) on a Biacore T100 instrument. We took advantage of recently developed carbohydrate-linker chemistry (26) to immobilize oxime glyc conjugates of Nod factor, (GlcNAc)x, and glucose by thiol coupling on a sensor chip (Fig. S5B). To determine binding affinities with the Nod factor receptors, the following ligands were reacted onto three flow cells (Fc) of a CM5 sensor surface: Fc1, glucose-conjugate as reference (Fig. S4C); Fc2, (GlcNAc)x-conjugate (Fig. S4D); Fc3, Nod factor-conjugate (Figs. S3B and S4E). Wheat germ agglutinin (WGA), a lectin with a known affinity toward GlcNAc, was used as a control to validate the sensor chip analysis. The sensorgrams obtained for WGA addition to (GlcNAc)x and Nod factor, in Fc2 and 3, respectively, showed a time-dependent response with rapid association and dissociation (Fig. S8 C and D). No obvious difference between WGA binding to (GlcNAc)x compared with Nod factor was detected (Fig. 3A and S8 C and D). The dissociation constants were determined by analyzing the equilibrium response versus protein concentration using a nonlinear fit (GraphPad Prism 5). *Kd* values of 13 ± 3 µM and 25 ± 8 µM were found for Nod factor and (GlcNAc)x, respectively (Table 2). These binding constants are in the same range as the *Kd* of 47 µM, which was determined by passing (GlcNAc)x over a sensor chip with immobilized WGA (28).

When purified NFR1-GFP or NFR5-GFP protein (Fig. 1A and B) was added to the sensor chip, clear association and dissociation phases were observed in the sensorgram of Fc5 containing

Table 1. List of complex N-glycan structures found on NFR5 protein expressed in *A. thaliana* and *N. benthamiana*, respectively

<table>
<thead>
<tr>
<th>ES</th>
<th>Enzyme</th>
<th>Peptide sequence of glycosylated peptide after digestion</th>
<th>m/z</th>
<th>N-glycan structures</th>
</tr>
</thead>
<tbody>
<tr>
<td>At</td>
<td>Asp-N</td>
<td>DN(198)SVLVSAKFGASPA</td>
<td>3039</td>
<td></td>
</tr>
<tr>
<td>At</td>
<td>Trypsin</td>
<td>GIQLITYVWKNPDN(198)Svlsvak</td>
<td>4085</td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>Asp-N</td>
<td>DN(198)SVLVSKFGASPA</td>
<td>3039</td>
<td></td>
</tr>
<tr>
<td>At</td>
<td>Chymotrypsin</td>
<td>RSEKISGPDSCPVDSSPSPCETYTVYTAGPNLSSLTN(68)SSIDFDISPL</td>
<td>6895*</td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>Asp-N</td>
<td>RSEKISGPDSCPVDSSPSPCETYTVYTAGPNLSSLTN(68)SSIDFDISPL</td>
<td>5994*</td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>Chymotrypsin</td>
<td>RSEKISGPDSCPVDSSPSPCETYTVYTAGPNLSSLTN(68)SSIDFDISPL</td>
<td>6886</td>
<td></td>
</tr>
</tbody>
</table>

*At. A. thaliana; ES, expression system; Nb, N. benthamiana; , fucose; , mannos; , N-acetylgalactosamine. *, xylose.*
Nod factor (Fig. S9.4). No time-dependent response could be measured with the reference surface of glucose in Fc1, which displayed only the increased refractive index from the injected NFR5-GFP fusion protein. The dissociation constant was determined by analyzing the equilibrium response versus protein concentrations using a nonlinear fit. Three independent protein preparations of NFR1 or NFR5 were tested and showed the same high-affinity binding toward Nod factor. The respective K_d values were 10.1 ± 2.5 nM for NFR5, 4.9 ± 1.3 nM for NFR1, and saturation was at ~ 130 nM and 64 nM, respectively (Fig. 3A, Fig. S9.4, and Table 2). In contrast, binding to (GlcNAc)$_3$ in Fc2 was not detected. Finally, GFP purified from N. benthamiana was used as a control on the chip and no binding was detected.

To further characterize the binding between the receptors and Nod factor, we used microscale thermophoresis (MST), an optical method that relies on the change of the hydration shell of biomolecules due to changes in their structural conformation upon binding of a ligand/interaction partner (29–31). These changes result in a relative mobility change of the protein in the applied temperature gradient and are used to determine binding affinities in free solution. Binding of large proteins to small ligands is expected to result in larger mobility shifts compared with the reverse experiment. Based on that assumption, we titrated NFR1 receptor proteins (~ 100 kDa) to a constant concentration of Alexa$_{488}$-labeled Nod factor (~ 1.5 kDa). Binding of NFR5 and NFR1 to Nod factor in the nanomolar range was observed (Fig. 3B and Fig. S9.8). A change in the fluorescent signal was detected in the temperature jump for measurements with NFR5 and in the thermophoresis phase for measurements with NFR1. In contrast, no change in fluorescence signal was detected with labeled (GlcNAc)$_3$, labeled linker molecule nor for labeled Nod factor in the absence of the receptor proteins (Fig. 3B). The K_d values obtained for the interaction of NFR5 or NFR1 and labeled Nod factor were 4.0 ± 1.5 nM and 0.61 ± 0.25 nM, respectively (Table 2).

Discussion

We have established procedures for transient and stable expression of integral membrane Nod factor receptor proteins. The Lotus NFR1 and NFR5 receptors were purified as YFP or GFP fusion proteins from membranes of *A. thaliana* and/or *N. benthamiana* in amounts sufficient for determination of ligand-binding affinities of these recalchitin proteins. Attempts to establish stable NFR1 expression in *A. thaliana* failed. We assume that a high level of NFR1 protein induces downstream signaling leading to cell ablation. Supporting this notion, cell death, comparable to that observed after low-level expression of NFR1 together with NFR5 (17), was observed during attempts to express NFR1 at high levels in *N. benthamiana*. High-level expression of NFR5 did not induce this cell death response, and NFR5 appears to completely depend on complex formation with the kinase-active NFR1 protein to play its role in signal initiation. Together, these observations corroborate our in vitro results showing kinase activity of purified NFR1 and also strengthen the conclusion that the NFR1 protein used for binding studies was folded and functional. Similar to NFR1 in *A. thaliana*, stable transgenic lines overexpressing LYK3 could not be obtained in *Medicago* (32).

Sequencing of the NFR1 and NFR5 N-termini showed that both receptor proteins were processed. For the NFR1 ectodomain, the N-terminus was determined to be removed after cleavage near cysteine originally predicted to be retained. Both NFR1 and NFR5 have six cysteines arranged in three pairs in their processed ectodomains and disulfide bridges between them probably affect the structure of the ectodomains as recently shown for CERK1 (33). Highlighting the importance of these cysteine pairs, amino acid substitutions in the corresponding cysteines of the NFP protein were shown to be functionally significant in complementation studies (34). Detailed analysis of the N-glycan structure of NFR5 by tandem mass spectrometry revealed two complex structures with identical sugar compositions (Man$_3$XylFucGlcNAc$_2$) at N68 and N198. Additionally, mannose-rich structures were found at N68 and N198 of NFR5 from microsomal fractions of *A. thaliana* (35). Together with our detailed MS analysis of glycan structures, these results suggest that processing was ongoing at the time of harvest and that the high-mannose proteins were extracted from the Golgi apparatus, because processing of glucose and some mannose moieties from Glc$_3$Man$_3$GlcNAc$_2$ precursors had occurred (35, 36). No reglucosylation after “quality control” processes in the endoplasmic reticulum (37) was detected, and we infer that NFR5 protein was folded and transferred to the Golgi apparatus. Two complex glycans (Man$_3$XylFucGlcNAc$_2$) and (Man$_3$XylFuc$_2$Gal$_2$GlcNAc$_3$) are predominantly found in extracellular proteins (35). The two structures (Man$_3$XylGlcNAc$_4$ and Man$_3$GlcNAc$_3$) found in the N-glycan analysis of NFR5 could thus be precursors. Glycosylation was also detected in the NFP protein from transgenic *Medicago* by polyclarylaxide gel analysis (38). Together with our detailed MS analysis of glycan structures,

![Image](https://www.pnas.org/cgi/doi/10.1073/pnas.1205171109)
this observation indicates that NFRs have highly N-glycosylated ectodomains although a functional role could not be assigned in complementation studies using NFP (34). Overall our N-glycan analysis of NFR5 indicates that the NFR5 protein is folded and processed in both expression systems. Because N-glycan biosynthesis appears to be conserved in higher plants (36), we expect the (Man_αXylFucGlcNAc₂) N-glycan structure reflects the native structure in <i>Lotus</i>

The <i>M. loti</i> Nod factor is composed of a pentameric GlcNAc backbone, which carries acetyl-fucose, carbamoyl, N-methyl, and C_{18:1} N-acyl attachments (39, 40). Fully decorated Nod factor and chitin oligomer backbones were attached to an SPR sensor surface or linked to fluorophores at the reducing moiety by using chemoselective oxime chemistry and biological activity at 10^{−3} M was shown for fluorophore-labeled Nod factor (Fig. S8). The NFR1 and NFR5 receptor proteins bound these modified lipochitooligosaccharides with <i>K_d</i> values in the nanomolar range. Although the bead assay detected (GlcNAc)₅ binding in the 10^{−5} to 10^{−4} M range, no high affinity binding of (GlcNAc)₅ was detected by using surface plasmon resonance or thermophoresis. An affinity comparable to the chitin-binding site of the CERK1 receptor, which is estimated to have a <i>K_d</i> of ~82 nM (41), was thus not detected in these assays. However, similar to CERK1 where binding of chitin beads required the presence of all three LysM modules (42), only one binding affinity was found.

Interestingly, the <i>K_d</i> values for NFR1 and NFR5 ligand binding are comparable to the 10^{−7} to 10^{−10} M Nod factor concentrations found to induce membrane depolarization, calcium influx, and calcium spiking in <i>Lotus</i> (4, 15). Experiments directly comparing chitin oligosaccharides and Nod factor effects in calcium spiking from calcium in <i>Medicago</i> found that 10^{−9} M to 10^{−12} M of fully decorated Nod factor was sufficient to induce calcium spiking, whereas (GlcNAc)₅ at 10^{−4} M to 10^{−6} M was required for induction of calcium spiking (14). In pea root hairs, calcium spiking was induced by 10^{−6} M of Nod factor, whereas 10^{−5} M (GlcNAc)₅ or (GlcNAc)₄ was required to induce regular spiking (16). Considering these concentrations, the <i>K_d</i> values determined for NFR1 and NFR5 correspond to a high-affinity Nod factor-binding site required for biological activity. The similar ligand affinities of NFR1 and NFR5 are intriguing considering the NFR5 dependence on NFR1 kinase activity for downstream signaling. A mechanism whereby Nod factor binding at both receptor ectodomains promotes complex formation with the cytoplasmic domain of NFR5 being required for subsequent interaction with cellular factor(s) might explain this observation as well as the conservation of the NFR5 cytoplasmic domain. Recent structural analysis of the CERK1 ectodomain defined a single site in the LysM2 domain that binds chitin in the micromolar range (33), with (GlcNAc)₅ inducing receptor dimerization that was inhibited by (GlcNAc)₄. The suggested function of chitin as a bivalent ligand assembling CERK1 into functional dimers might exemplify such a mechanism, separating binding and receptor activity (33). In planta binding studies and binding studies on membrane fractions from <i>Lotus</i> root hairs of wild-type and nfr1 nfr5 mutant plants could, in principle, provide additional insight into the NFR receptor mechanism in a cellular context. However, the low abundance of NFR receptor proteins and the “sticky” amphiphilic nature of the Nod factor make such approaches technically very challenging and separation of receptor-binding from membrane- or cell wall-binding difficult.

The binding affinities we have determined do not distinguish calcium spiking from calcium influx, which in <i>Lotus</i> are induced by 0.1–1 nM versus 10 nM Nod factor (15). Binding of Nod factor to the three LysM domains with different affinities might be involved in setting thresholds for these two activation processes but, at present, our methodology is unable to assign the binding directly to any of the LysM domains. More refined studies using, for example, protein concentrations higher than we are able to achieve and maintain in solution, might in the future reveal additional binding sites or affinities contributing to the triggering of the receptors. Elucidation of the binding affinities and possible interactions of the three LysM modules present in the ectodomains of the NFR proteins may be the key to understanding the perception mechanism and remains a challenge for the future.

Materials and Methods

Membrane Permeabilization of NFR1 and NFR5 from <i>N. benthamiana</i> and <i>A. thaliana</i>. The NFR1 and NFR5 GFP/YFP fusion proteins were extracted from transiently transformed <i>N. benthamiana</i> leaves or stably transformed <i>Arabidopsis thaliana</i>.
seedlings grown in liquid culture. Plasma membranes were purified by aqueous two-phase partitioning, and membrane proteins were solubilized with Fos-Choline 10. The GFP_his fusion proteins were purified by Ni-NTA affinity chromatography and gel filtration, whereas the YFP. HA fusion proteins were purified by gel filtration. Protein quantification was performed by using in-gel fluorescence against a GFP standard. The yield per gram of tissue was ∼20 ng for purifications from the micromodal fraction and 5 ng for purifications from the plasma membrane. Surface plasma resonance, microscale thermophoresis, and a bead-based assay were used for demonstrating ligand-receptor interactions and determining K_d values. N-terminal sequencing was performed by using automated Edman degradation on a PROCEQL sequencer.

Glycan Analysis by MS. Protein bands containing NFR5 expressed in *N. benthamiana* or *A. thaliana* were excised from SDS-PAGE gels, processed, and deglycosylated by using PNGase A. The glycosylated and deglycosylated samples were in-gel digested with trypsin, chymotrypsin, or Asp-N endo-proteinase. Samples were then eluted from micro columns onto a target plate, and mass spectra were recorded by using a 4800 Plus MALDI TOF/TOF (AB SCIEX) mass spectrometer, operated in reflector, positive ion mode, and acceleration voltage was 20 kV.

Extraction, Purification, and Modification of Ligands. Nod factors were isolated and purified by RP-HPLC using a C18 column. For the labeling, the Nod factor and chitin ligands were coupled to a tetra(ethylene glycol) linker with a reactive aminoxy group in one end and a protected thiol in the other end by oxime coupling, resulting in stable oxime glycoconjugates. The resulting thiol-functionalized conjugates were purified by semipreparative HPLC and linked to Alexa488 or immobilized by thiol coupling on CMS sensor chips.

ACKNOWLEDGMENTS. We thank Svend Dam for suggestions on the processing analysis and Fleur C. Dolman for reading and commenting the manuscript. The Danish National Research Foundation and the European Research Council funded this work.